论文     首页 > 科研成果 > 论文
A Novel Vpu Adaptive Mutation of HIV-1 Degrades Tetherin in Northern Pig-Tailed Macaques (Macaca leonina) Mainly via the Ubiquitin-Proteasome Pathway and Increases Viral Release
论文题目: A Novel Vpu Adaptive Mutation of HIV-1 Degrades Tetherin in Northern Pig-Tailed Macaques (Macaca leonina) Mainly via the Ubiquitin-Proteasome Pathway and Increases Viral Release
作者: Ying Lu, Wei Pan, Man-Di Zhang, Jia-Hao Song, Fan Shen, Wen-Qiang He, Yong-Tang Zheng
联系作者: zhengyt@mail.kiz.ac.cn
发表年度: 2023
DOI: doi: 10.1128/jvi.00200-23
摘要: Tetherin prevents viral cross-species transmission by inhibiting the release of multiple enveloped viruses from infected cells. With the evolution of simian immunodeficiency virus of chimpanzees (SIVcpz), a pandemic human immunodeficiency virus type 1 (HIV-1) precursor, its Vpu protein can antagonize human tetherin (hTetherin). Macaca leonina (northern pig-tailed macaque [NPM]) is susceptible to HIV-1, but host-specific restriction factors limit virus replication in vivo. In this study, we isolated the virus from NPMs infected with strain stHIV-1sv (with a macaque-adapted HIV-1 env gene from simian-human immunodeficiency virus SHIV-KB9, a vif gene replaced by SIVmac239, and other genes originating from HIV-1NL4.3) and found that a single acidic amino acid substitution (G53D) in Vpu could increase its ability to degrade the tetherin of macaques (mTetherin) mainly through the proteasome pathway, resulting in an enhanced release and resistance to interferon inhibition of the mutant stHIV-1sv strain, with no influence on the other functions of Vpu. IMPORTANCE HIV-1 has obvious host specificity, which has greatly hindered the construction of animal models and severely restricted the development of HIV-1 vaccines and drugs. To overcome this barrier, we attempted to isolate the virus from NPMs infected with stHIV-1sv, search for a strain with an adaptive mutation in NPMs, and develop a more appropriate nonhuman primate model of HIV-1. This is the first report identifying HIV-1 adaptations in NPMs. It suggests that while tetherin may limit HIV-1 cross-species transmission, the Vpu protein in HIV-1 can overcome this species barrier through adaptive mutation, increasing viral replication in the new host. This finding will be beneficial to building an appropriate animal model for HIV-1 infection and promoting the development of HIV-1 vaccines and drugs
刊物名称: Journal of Virology
论文出处: https://journals.asm.org/doi/10.1128/jvi.00200-23?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed
影响因子: 6.549(2021IF)
Copyright © 2018-2019 中国科学院昆明动物研究所 .All Rights Reserved
地址:云南省昆明市五华区教场东路32号  邮编:650223
电子邮件:zhanggq@mail.kiz.ac.cn  滇ICP备05000723号